Assignment 2

Hand in no. 3, 4 and 8 by September 20, 2018.

- 1. This is an optional problem.
	- (a) Assume that the Fourier coefficients of a continuous, 2π -periodic function vanish identically. Show that this function must be the zero function. Hint: WLOG assume $f(0) > 0$. Use the relation

$$
\int_{-\pi}^{\pi} f(x)p(x)dx = 0,
$$

where $p(x)$ is a trigonometric polynomial of the form $(\varepsilon + \cos x)^k$ for some small ε and large $k > 0$.

- (b) Use the result in (a) to show that if the Fourier series of a continuous, 2π -periodic function converges uniformly, then it converges uniformly to the function itself.
- (c) Apply (b) to the Fourier expansion of x^2 to show that

$$
\frac{\pi^2}{12} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}.
$$

- 2. Let f be a complex valued 2π -periodic function whose derivative is again integrable on $[-\pi, \pi]$. Show that c_n and c'_n , the Fourier coefficients of f and f' respectively, satisfies the relation $c'_n = inc_n, n \in \mathbb{Z}$. Do not do it formally. Use the definition of the integration of complex valued functions.
- 3. Let $C_{2\pi}^{\infty}$ be the class of all smooth 2π -periodic, complex-valued functions and C^{∞} the class of all complex bisequences satisfying $c_n = \circ (n^{-k})$ as $n \to \pm \infty$ for every k. Show that the Fourier transform $f \mapsto \hat{f}$ is bijective from $C^{\infty}_{2\pi}$ to \mathcal{C}^{∞} .
- 4. Propose a definition for $\sqrt{d/dx}$. This operator should be a linear map which maps smooth functions to smooth functions satisfying

$$
\sqrt{\frac{d}{dx}}\sqrt{\frac{d}{dx}}f = \frac{d}{dx}f,
$$

for all smooth, 2π -periodic f.

5. Let f be a continuous, 2π -periodic function and its primitive function be given by

$$
F(x) = \int_0^x f(x) dx.
$$

Show that F is 2π -periodic if and only if f has zero mean. In this case,

$$
\hat{F}(n) = \frac{1}{in} \hat{f}(n), \ \ \forall n \neq 0.
$$

6. Let \mathcal{C}' be the subspace of $\mathcal C$ consisting of all bisequences $\{c_n\}$ satisfying $\sum_{-\infty}^{\infty} |c_n|^2 < \infty$. (a) For $f \in R[-\pi, \pi]$, show that

$$
\sum_{-\infty}^{\infty} |c_n|^2 \leq \int_{-\pi}^{\pi} |f|^2.
$$

- (b) Deduce from (a) that the Fourier transform $f \mapsto \hat{f}(n)$ maps $R_{2\pi}$ into \mathcal{C}' .
- (c) Explain why the trigonometric series

$$
\sum_{n=1}^{\infty} \frac{\cos nx}{n^{\alpha}}, \quad \alpha \in (0, 1/2],
$$

is not the Fourier series of any function in $R_{2\pi}$.

- 7. Let f be a C^1 -piecewise, continuous 2π -periodic function. In other words, there exist $-\pi = a_1 < a_2 < \cdots < a_N = \pi$ and C^1 -functions f_j defined on $[a_j, a_{j+1}], j = 0, \cdots, N-1$ such that $f = f_j$ on (a_j, a_{j+1}) . Show that its Fourier series converges uniformly to itself. Hint: Let $M = \max_j {\sup |f'_j(x)| : x \in [a_j, a_{j+1}] }$. Establish $|f(y) - f(x)| \le M|y - x|$ for all $x, y \in [-\pi, \pi]$.
- 8. Show that for a Lipschitiz continuous, 2π -periodic function, its Fourier coefficients satisfy

$$
|a_n| \le \frac{C\pi}{n}, \quad |b_n| \le \frac{C\pi}{n},
$$

for some constant C.